Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823343

RESUMO

The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 µM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.


Assuntos
Ectoderma , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Ectoderma/metabolismo , Prolina/metabolismo , Transdução de Sinais , Células-Tronco Embrionárias , Diferenciação Celular/genética
2.
iScience ; 26(4): 106477, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091234

RESUMO

We have exploited islet-associated macrophages (IAMs) as a model of resident macrophage function, focusing on more physiological conditions than the commonly used extremes of M1 (inflammation) versus M2 (tissue remodeling) polarization. Under steady state, murine IAMs are metabolically poised between aerobic glycolysis and oxidative phosphorylation, and thereby exert a brake on glucose-stimulated insulin secretion (GSIS). This is underpinned by epigenetic remodeling via the metabolically regulated histone demethylase Kdm5a. Conversely, GSIS is enhanced by engaging Axl receptors on IAMs, or by augmenting their oxidation of glucose. Following high-fat feeding, efferocytosis is stimulated in IAMs in conjunction with Mertk and TGFß receptor signaling. This impairs GSIS and potentially contributes to ß-cell failure in pre-diabetes. Thus, IAMs serve as relays in many more settings than currently appreciated, fine-tuning insulin secretion in response to dynamic changes in the external environment. Intervening in this nexus might represent a means of preserving ß-cell function during metabolic disease.

3.
Mol Ther ; 30(3): 1119-1134, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998954

RESUMO

Neuroblastoma is a deadly childhood cancer arising in the developing sympathetic nervous system. High-risk patients are currently treated with intensive chemotherapy, which is curative in only 50% of children and leaves some surviving patients with life-long side effects. microRNAs (miRNAs) are critical regulators of neural crest development and are deregulated during neuroblastoma tumorigenesis, making miRNA-based drugs an attractive therapeutic avenue. A functional screen of >1,200 miRNA mimics was conducted in neuroblastoma cell lines to discover miRNAs that sensitized cells to low doses (30% inhibitory concentration [IC30]) of doxorubicin and vincristine chemotherapy used in the treatment of the disease. Three miRNAs, miR-99b-5p, miR-380-3p, and miR-485-3p, had potent chemosensitizing activity with doxorubicin in multiple models of high-risk neuroblastoma. These miRNAs underwent genomic loss in a subset of neuroblastoma patients, and low expression predicted poor survival outcome. In vitro functional assays revealed each of these miRNAs enhanced the anti-proliferative and pro-apoptotic effects of doxorubicin. We used RNA sequencing (RNA-seq) to show that miR-99b-5p represses neuroblastoma dependency genes LIN28B and PHOX2B both in vitro and in patient-derived xenograft (PDX) tumors. Luciferase reporter assays demonstrate that PHOX2B is a direct target of miR-99b-5p. We anticipate that restoring the function of the tumor-suppressive miRNAs discovered here may be a valuable therapeutic strategy for the treatment of neuroblastoma patients.


Assuntos
MicroRNAs , Neuroblastoma , Criança , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética
4.
Cancers (Basel) ; 13(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944870

RESUMO

Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.

5.
STAR Protoc ; 2(2): 100514, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34013210

RESUMO

Chromatin immunoprecipitation (ChIP) is used to study interactions between proteins and DNA. Nuclear lysates are prepared, and chromatin is fragmented by sonication. Antibodies are used to purify a protein of interest (e.g., a transcription factor or histone mark) along with any bound DNA. The genomic binding sites can then be mapped by sequencing the bound DNA (ChIP-seq) or by qPCR if binding sites are already known. ChIP requires optimization for each cell type, and success is highly antibody dependent. This protocol can be adapted to other cell lines with careful optimization. For complete details on the use and execution of this protocol, please refer to Holliday et al. (2021).


Assuntos
Neoplasias da Mama/metabolismo , Imunoprecipitação da Cromatina , Código das Histonas , Glândulas Mamárias Humanas/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos
6.
iScience ; 24(2): 102072, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554073

RESUMO

Inhibitor of differentiation (ID) proteins dimerize with basic HLH (bHLH) transcription factors, repressing transcription of lineage-specification genes across diverse cellular lineages. ID4 is a key regulator of mammary stem cells; however, the mechanism by which it achieves this is unclear. Here, we show that ID4 has a cell autonomous role in preventing myoepithelial differentiation of basal cells in mammary organoids and in vivo. ID4 positively regulates proliferative genes and negatively regulates genes involved in myoepithelial function. Mass spectrometry reveals that ID4 interacts with the bHLH protein HEB, which binds to E-box motifs in regulatory elements of basal developmental genes involved in extracellular matrix and the contractile cytoskeleton. We conclude that high ID4 expression in mammary basal stem cells antagonizes HEB transcriptional activity, preventing myoepithelial differentiation and allowing for appropriate tissue morphogenesis. Downregulation of ID4 during pregnancy modulates gene regulated by HEB, promoting specialization of basal cells into myoepithelial cells.

7.
Lab Invest ; 101(1): 26-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873880

RESUMO

Most NUTM1-rearranged neoplasms (NRNs) have fusions between NUTM1 and BRD (bromodomain-containing) family members and are termed NUT carcinomas (NCs) because they show some squamous differentiation. However, some NRNs are associated with fusions between NUTM1 and members of the MAD (MAX dimerization) gene family of MYC antagonists. Here we describe a small round cell malignancy from the gastro-esophageal junction with a previously unreported fusion between NUTM1 and the MAD family member MXI1. In contrast to NCs, the MXI1-NUTM1 tumor did not show squamous differentiation and did not express MYC, TP63 or SOX2, genes known to be targets of BRD-NUTM1 proteins and critical for NC oncogenesis. Transcriptome analysis showed paradoxical enrichment of MYC target genes in the MXI1-NUTM1 tumor despite the lack of MYC expression. When expressed in vitro MXI1-NUTM1 partially phenocopied MYC, enhancing cell proliferation and cooperating with oncogenic HRAS to produce anchorage-independent cell growth. These data provide evidence that MAD family members, which are normally repressors of MYC activity, can be converted into MYC-like mimics by fusion to NUTM1. The pathological features and novel oncogenic mechanism of the MXI1-NUTM1 tumor show that identification of NUTM1 fusion partners can be important for accurate diagnostic classification of some NRN subtypes, and potentially may guide therapeutic options.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Esofágicas/genética , Junção Esofagogástrica/patologia , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/genética , Proteínas Supressoras de Tumor/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Evolução Fatal , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transcriptoma
8.
Biomolecules ; 10(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911668

RESUMO

The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1-Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1-Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC.


Assuntos
Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Cinesinas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Benzamidas/farmacologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Quinazolinas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Front Cell Dev Biol ; 8: 552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766238

RESUMO

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.

10.
EMBO J ; 39(19): e104063, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790115

RESUMO

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into two states: the first with features of myofibroblasts and the second characterised by high expression of growth factors and immunomodulatory molecules. PVL cells clustered into two states consistent with a differentiated and immature phenotype. We showed that these stromal states have distinct morphologies, spatial relationships and functional properties in regulating the extracellular matrix. Using cell signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse array of immunoregulatory molecules. Importantly, the investigation of gene signatures from inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. Such insights present promising candidates to further investigate for new therapeutic strategies in the treatment of TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Humanos , RNA-Seq , Células Estromais/imunologia , Células Estromais/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Neoplasias de Mama Triplo Negativas/patologia
11.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527287

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proteogenômica , Células Tumorais Cultivadas
12.
Breast Cancer Res ; 20(1): 100, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176939

RESUMO

Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.


Assuntos
Neoplasias da Mama/genética , Mama/crescimento & desenvolvimento , Carcinogênese/genética , Epigênese Genética/fisiologia , Animais , Mama/patologia , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Cromatina/metabolismo , Metilação de DNA/fisiologia , Feminino , Código das Histonas/fisiologia , Histonas/metabolismo , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Modelos Animais , Células-Tronco/fisiologia
13.
Endocr Relat Cancer ; 23(9): R381-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412917

RESUMO

Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Mama/metabolismo , Epitélio/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Oncogenes , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...